Ribosylation Rapidly Induces α-Synuclein to Form Highly Cytotoxic Molten Globules of Advanced Glycation End Products
نویسندگان
چکیده
BACKGROUND Alpha synuclein (alpha-Syn) is the main component of Lewy bodies which are associated with several neurodegenerative diseases such as Parkinson's disease. While the glycation with D-glucose that results in alpha-Syn misfold and aggregation has been studied, the effects of glycation with D-ribose on alpha-Syn have not been investigated. METHODOLOGY/PRINCIPAL FINDINGS Here, we show that ribosylation induces alpha-Syn misfolding and generates advanced glycation end products (AGEs) which form protein molten globules with high cytotoxcity. Results from native- and SDS-PAGE showed that D-ribose reacted rapidly with alpha-Syn, leading to dimerization and polymerization. Trypsin digestion and sequencing analysis revealed that during ribosylation the lysinyl residues (K(58), K(60), K(80), K(96), K(97) and K(102)) in the C-terminal region reacted more quickly with D-ribose than those of the N-terminal region. Using Western blotting, AGEs resulting from the glycation of alpha-Syn were observed within 24 h in the presence of D-ribose, but were not observed in the presence of D-glucose. Changes in fluorescence at 410 nm demonstrated again that AGEs were formed during early ribosylation. Changes in the secondary structure of ribosylated alpha-Syn were not clearly detected by CD spectrometry in studies on protein conformation. However, intrinsic fluorescence at 310 nm decreased markedly in the presence of D-ribose. Observations with atomic force microscopy showed that the surface morphology of glycated alpha-Syn looked like globular aggregates. thioflavin T (ThT) fluorescence increased during alpha-Syn incubation regardless of ribosylation. As incubation time increased, ribosylation of alpha-Syn resulted in a blue-shift (approximately 100 nm) in the fluorescence of ANS. The light scattering intensity of ribosylated alpha-Syn was not markedly different from native alpha-Syn, suggesting that ribosylated alpha-Syn is present as molten protein globules. Ribosylated products had a high cytotoxicity to SH-SY5Y cells, leading to LDH release and increase in the levels of reactive oxygen species (ROS). CONCLUSIONS/SIGNIFICANCE alpha-Syn is rapidly glycated in the presence of D-ribose generating molten globule-like aggregations which cause cell oxidative stress and result in high cytotoxicity.
منابع مشابه
Role of advanced glycation on aggregation and DNA binding properties of α-synuclein.
Parkinson's disease (PD) is a neurodegenerative disease with multiple etiologies. Advanced glycation end products (AGEs) accumulate in the aging brain and could be one of the reasons for age-related diseases like PD. Oxidative stress also leads to the formation of AGEs and may be involved in neurodegeneration by altering the properties of proteins. α-Synuclein is involved in pathogenesis of PD ...
متن کاملD-Ribose Induces Cellular Protein Glycation and Impairs Mouse Spatial Cognition
BACKGROUND D-ribose, an important reducing monosaccharide, is highly active in the glycation of proteins, and results in the rapid production of advanced glycation end products (AGEs) in vitro. However, whether D-ribose participates in glycation and leads to production of AGEs in vivo still requires investigation. METHODOLOGY/PRINCIPAL FINDINGS Here we treated cultured cells and mice with D-r...
متن کاملGlycation Accelerates Fibrillization of the Amyloidogenic W7FW14F Apomyoglobin
Neurodegenerative diseases are associated with misfolding and deposition of specific proteins, either intra or extracellularly in the nervous system. Advanced glycation end products (AGEs) originate from different molecular species that become glycated after exposure to sugars. Several proteins implicated in neurodegenerative diseases have been found to be glycated in vivo and the extent of gly...
متن کاملGlycation of Human Cortical and Cancellous Bone Captures Differences in the Formation of Maillard Reaction Products between Glucose and Ribose
To better understand some aspects of bone matrix glycation, we used an in vitro glycation approach. Within two weeks, our glycation procedures led to the formation of advanced glycation end products (AGEs) at the levels that corresponded to approx. 25-30 years of the natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in vitro using either glucose (glucosyla...
متن کاملThe role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells
Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...
متن کامل